Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases

Author:

Plascencia-Villa Germán1,Perry George1ORCID

Affiliation:

1. Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA

Abstract

The progressive deterioration of function and structure of brain cells in neurodegenerative diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However, most of the efforts to develop therapies for Alzheimer’s and Parkinson’s disease have focused on restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein aggregates through immunotherapies, or simply treating symptomatology. However, none of these approaches to treating neurodegeneration can stop or reverse the disease other than by helping to maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants, metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons. After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegeneration. These mitochondria-targeted therapeutic agents are an alternative to established or conventional molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.

Funder

Lowe Foundation

Kleberg Foundation

Semmes Foundation

Alzheimer’s Association

NIH National Institute on Aging

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference124 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3