Affiliation:
1. Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin 150025, China
Abstract
Autophagy is a conserved cellular process that functions in the maintenance of physiological and metabolic balance. It has previously been demonstrated to improve plant tolerance to abiotic stress. Numerous autophagy–related genes (ATGs) that regulate abiotic stress have been identified, but there have been few functional studies showing how ATGs confer cold stress tolerance. The cold transcriptome data of the crown buds that experienced overwintering of the alfalfa (Medicago sativa L.) showed that MsATG13 is upregulated in response to cold stress. In the present study, we found that MsATG13 transgenic tobacco enhanced cold tolerance compared to wild–type (WT) plants. Transmission electron microscopy demonstrated that transgenic tobacco overexpressing MsATG13 formed more autophagosomes than WT plants in response to cold stress conditions. The transgenic tobacco increased autophagy levels due to upregulation of other ATGs that were necessary for autophagosome production under cold stress conditions. MsATG13 transgenic tobacco also increased the proline contents and antioxidant enzyme activities, enhancing the antioxidant defense capabilities under cold stress conditions. Furthermore, MsATG13 overexpression decreased levels of superoxide anion radicals and hydrogen peroxide under cold stress conditions. These findings demonstrate the role of MsATG13 in enhancing plant cold tolerance through modulation of autophagy and antioxidant levels.
Funder
National Natural Science Foundation of China
Science and Technology Major Project of Heilongjiang Province
Excellent Youth Project of Natural Science Foundation of Heilongjiang Province
Doctor Starting Fund Project of Harbin Normal University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献