Transcriptome Analysis Reveals the Molecular Basis of Overfeeding-Induced Diabetes in Zebrafish

Author:

Ge Guodong1,Ren Jing1,Song Guili2,Li Qing2,Cui Zongbin1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China

2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Abstract

Diabetes has gradually become a serious disease that threatens human health. It can induce various complications, and the pathogenesis of diabetes is quite complex and not yet fully elucidated. The zebrafish has been widely acknowledged as a useful model for investigating the mechanisms underlying the pathogenesis and therapeutic interventions of diabetes. However, the molecular basis of zebrafish diabetes induced by overfeeding remains unknown. In this study, a zebrafish diabetes model was established by overfeeding, and the molecular basis of zebrafish diabetes induced by overfeeding was explored. Compared with the control group, the body length, body weight, and condition factor index of zebrafish increased significantly after four weeks of overfeeding. There was a significant elevation in the fasting blood glucose level, accompanied by a large number of lipid droplets accumulated within the liver. The levels of triglycerides and cholesterol in both the serum and liver exhibited a statistically significant increase. Transcriptome sequencing was employed to investigate changes in the livers of overfed zebrafish. The number of up-regulated and down-regulated differentially expressed genes (DEGs) was 1582 and 2404, respectively, in the livers of overfed zebrafish. The DEGs were subjected to KEGG and GO enrichment analyses, and the hub signaling pathways and hub DEGs were identified. The results demonstrate that sixteen genes within the signal pathway associated with fatty acid metabolism were found to be significantly up-regulated. Specifically, these genes were found to mainly participate in fatty acid transport, fatty acid oxidation, and ketogenesis. Furthermore, thirteen genes that play a crucial role in glucose metabolism, particularly in the pathways of glycolysis and glycogenesis, were significantly down-regulated in the livers of overfed zebrafish. These results indicate insulin resistance and inhibition of glucose entry into liver cells in the livers of overfed zebrafish. These findings elucidate the underlying molecular basis of zebrafish diabetes induced by overfeeding and provide a model for further investigation of the pathogenesis and therapeutics of diabetes.

Funder

National Key R&D Program of China

Project for Guangdong Academy of Sciences to Build Domestic First-class Research Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3