Low-Engine-Order Forced Response Analysis of a Turbine Stage with Damaged Stator Vane

Author:

Zheng Yun1,Jin Xiubo1,Yang Hui1

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Abstract

A damaged stator vane can disrupt the circumferential symmetry of the design flow for turbine assemblies, which can lead to a low-engine-order (LEO) forced response of rotor blades. To help engineers be able to better address sudden vane damage failures, this paper conducts a mechanism analysis of the LEO forced response of rotor blades induced by a single damaged vane using an in-house computational fluid dynamic code (Hybrid Grid Aeroelasticity Environment). Firstly, it is found that the damaged vane introduces a family of LEO aerodynamic excitations with high amplitudes by full-annulus unsteady aeroelastic simulations of a single-stage turbine. In particular, the LEO forced response of the rotor blades excited by 3EO is 2.01 times higher than the resonance response excited by vane passing frequency, and the LEO resonance risk of the rotor blades is greatly increased. Then, by analyzing the flow characteristics of the wake and potential field of the stator row with a damaged vane, the localized high transient pressure in the notch cavity and the radial redistribution of the secondary vortex at the stator exit are the main sources of the low-order harmonic components in the flow field. Importantly, the interaction mechanisms in two regions with high LEO excitation amplitude on the rotor blade surface are revealed separately. Finally, an evaluation and comparison of a single damaged vane in terms of aerodynamic performance and LEO forced response was carried out. The results of this paper provide a good theoretical basis for engineers to effectively control the resonance response of rotor blades caused by a damaged stator vane in turbine design.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3