A Genetic Linkage Map of BC2 Population Reveals QTL Associated with Plant Architecture Traits in Lagerstroemia

Author:

Zhou Yang,Ye Yuanjun,Feng Lu,Zhang Ye,Lin Qifang,Liu Jieru,Cai Ming,Wang Jia,Cheng Tangren,Zhang Qixiang,Pan HuitangORCID

Abstract

Plant architecture improvement is of great significance in influencing crop yield, harvesting efficiency and ornamental value, by changing the spatial structure of the canopy. However, the mechanism on plant architecture in woody plants is still unclear. In order to study the genetic control of plant architecture traits and promote marker-assisted selection (MAS), a genetic linkage map was constructed, and QTL mapping was performed. In this study, using 188 BC2 progenies as materials, a genetic map of Lagerstroemia was constructed using amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers, and the QTLs of four key plant architecture traits (plant height, crown width, primary lateral branch height and internode length) were analyzed. The genetic map contains 22 linkage groups, including 198 AFLP markers and 36 SSR markers. The total length of the genome covered by the map is 1272 cM, and the average distance between markers is 6.8 cM. Three QTLs related to plant height were located in LG1, LG4 and LG17 linkage groups, and the phenotypic variation rates were 32.36, 16.18 and 12.73%, respectively. A QTL related to crown width was located in LG1 linkage group, and the phenotypic variation rate was 18.07%. Two QTLs related to primary lateral branch height were located in the LG1 and LG7 linkage groups, and the phenotypic variation rates were 20.59 and 15.34%, respectively. Two QTLs related to internode length were located in the LG1 and LG20 linkage groups, and the phenotypic variation rates were 14.86 and 9.87%. The results provide a scientific basis for finely mapping genes of plant architecture traits and marker-assisted breeding in Lagerstroemia.

Funder

National Key R and D Program of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3