Multimodal Deep Learning for Group Activity Recognition in Smart Office Environments

Author:

Florea George Albert,Mihailescu Radu-Casian

Abstract

Deep learning (DL) models have emerged in recent years as the state-of-the-art technique across numerous machine learning application domains. In particular, image processing-related tasks have seen a significant improvement in terms of performance due to increased availability of large datasets and extensive growth of computing power. In this paper we investigate the problem of group activity recognition in office environments using a multimodal deep learning approach, by fusing audio and visual data from video. Group activity recognition is a complex classification task, given that it extends beyond identifying the activities of individuals, by focusing on the combinations of activities and the interactions between them. The proposed fusion network was trained based on the audio–visual stream from the AMI Corpus dataset. The procedure consists of two steps. First, we extract a joint audio–visual feature representation for activity recognition, and second, we account for the temporal dependencies in the video in order to complete the classification task. We provide a comprehensive set of experimental results showing that our proposed multimodal deep network architecture outperforms previous approaches, which have been designed for unimodal analysis, on the aforementioned AMI dataset.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3