Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing

Author:

Qi Lulu12,Shi Pu12ORCID,Dvorakova Klara2ORCID,Van Oost Kristof2,Sun Qi1,Yu Hanqing3,van Wesemael Bas2ORCID

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium

3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Global efforts to restore the world’s degraded croplands require knowledge on the degree and extent of accelerated soil organic carbon (SOC) loss induced by soil erosion. However, the methods for assessing where and to what extent erosion takes place are still inadequate for precise detection of erosion hotspots at high spatial resolution. Drawing on recent advances in multitemporal Sentinel-2 remote sensing to create a bare soil composite that reflects erosion-induced variations in soil spectral signatures, this study attempted to develop a spectra-based soil erosion mapping approach to pinpoint eroded hotspots in a typical catchment located in the black soil region of northeast China as characterized by undulating landscapes. We built a ground-truth dataset consisting of three classes of soils representing Severe, Moderate and Low erosion intensity because of their inter-class contrasts in estimated erosion rates from 137Cs tracing. The spectral separability of different erosion classes was first tested by a combined principal component and linear discriminant analysis (PCA-LDA) against laboratory hyperspectral data and then validated against Sentinel-2-derived broadband spectra. The results show that PCA-LDA produced excellent classification accuracy (Kappa coefficient > 0.9) for both data sources and even more so for Sentinel-2 spectra, highlighting the effectiveness of the multitemporal approach to extract bare soil pixels. Further investigations into the spectral curves enabled identification of distinctive spectral features representative of shifting soil albedo and biochemical composition due to erosion-induced SOC mobilization. A classification scheme comprising the spectral features was applied to the Sentinel-2 bare soil composite for pixel-wise soil erosion mapping, in which 15.9% of the cropland area was detected as erosion hotspots, while the Moderate class occupied 65.4%. Comparing the erosion map to a NDVI map demonstrated the negative impact of soil erosion on crop growth from a spatial perspective, highlighting the potential of the proposed approach to aid targeted cropland management for food security and climate.

Funder

Natural Science Foundation of Jilin Province, China

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3