An Adaptive Adversarial Patch-Generating Algorithm for Defending against the Intelligent Low, Slow, and Small Target

Author:

Rasol Jarhinbek1,Xu Yuelei1,Zhang Zhaoxiang1,Zhang Fan1,Feng Weijia1,Dong Liheng2,Hui Tian1,Tao Chengyang1

Affiliation:

1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Electronics And Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The “low, slow, and small” target (LSST) poses a significant threat to the military ground unit. It is hard to defend against due to its invisibility to numerous detecting devices. With the onboard deep learning-based object detection methods, the intelligent LSST (ILSST) can find and detect the ground unit autonomously in a denied environment. This paper proposes an adversarial patch-based defending method to blind the ILSST by attacking its onboard object detection network. First, an adversarial influence score was established to indicate the influence of the adversarial noise on the objects. Then, based on this score, we used the least squares algorithm and Bisectional search methods to search the patch’s optimal coordinates and size. Using the optimal coordinates and size, an adaptive patch-generating network was constructed to automatically generate patches on ground units and hide the ground units from the deep learning-based object detection network. To evaluate the efficiency of our algorithm, a new LSST view dataset was collected, and extensive attacking experiments are carried out on this dataset. The results demonstrate that our algorithm can effectively attack the object detection networks, is better than state-of-the-art adversarial patch-generating algorithms in hiding the ground units from the object detection networks, and has high transferability among the object detection networks.

Funder

The Nature Science Foundation of Shaanxi

The Fundamental Research Funds for the Central Universities, Northwestern Polytechnical University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3