Evaluating Information-Retrieval Models and Machine-Learning Classifiers for Measuring the Social Perception towards Infectious Diseases

Author:

Apolinardo-Arzube OscarORCID,García-Díaz José AntonioORCID,Medina-Moreira JoséORCID,Luna-Aveiga HarryORCID,Valencia-García RafaelORCID

Abstract

Recent outbreaks of infectious diseases remind us the importance of early-detection systems improvement. Infodemiology is a novel research field that analyzes online information regarding public health that aims to complement traditional surveillance methods. However, the large volume of information requires the development of algorithms that handle natural language efficiently. In the bibliography, it is possible to find different techniques to carry out these infodemiology studies. However, as far as our knowledge, there are no comprehensive studies that compare the accuracy of these techniques. Consequently, we conducted an infodemiology-based study to extract positive or negative utterances related to infectious diseases so that future syndromic surveillance systems can be improved. The contribution of this paper is two-fold. On the one hand, we use Twitter to compile and label a balanced corpus of infectious diseases with 6164 utterances written in Spanish and collected from Central America. On the other hand, we compare two statistical-models: word-grams and char-grams. The experimentation involved the analysis of different gram sizes, different partitions of the corpus, and two machine-learning classifiers: Random-Forest and Sequential Minimal Optimization. The results reach a 90.80% of accuracy applying the char-grams model with five-char-gram sequences. As a final contribution, the compiled corpus is released.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3