Development of Machine Learning for Asthmatic and Healthy Voluntary Cough Sounds: A Proof of Concept Study

Author:

Hee Hwan IngORCID,Balamurali BTORCID,Karunakaran Arivazhagan,Herremans DorienORCID,Teoh Onn Hoe,Lee Khai Pin,Teng Sung Shin,Lui Simon,Chen Jer MingORCID

Abstract

(1) Background: Cough is a major presentation in childhood asthma. Here, we aim to develop a machine-learning based cough sound classifier for asthmatic and healthy children. (2) Methods: Children less than 16 years old were randomly recruited in a Children’s Hospital, from February 2017 to April 2018, and were divided into 2 cohorts—healthy children and children with acute asthma presenting with cough. Children with other concurrent respiratory conditions were excluded in the asthmatic cohort. Demographic data, duration of cough, and history of respiratory status were obtained. Children were instructed to produce voluntary cough sounds. These clinically labeled cough sounds were randomly divided into training and testing sets. Audio features such as Mel-Frequency Cepstral Coefficients and Constant-Q Cepstral Coefficients were extracted. Using a training set, a classification model was developed with Gaussian Mixture Model–Universal Background Model (GMM-UBM). Its predictive performance was tested using the test set against the physicians’ labels. (3) Results: Asthmatic cough sounds from 89 children (totaling 1192 cough sounds) and healthy coughs from 89 children (totaling 1140 cough sounds) were analyzed. The sensitivity and specificity of the audio-based classification model was 82.81% and 84.76%, respectively, when differentiating coughs from asthmatic children versus coughs from ‘healthy’ children. (4) Conclusion: Audio-based classification using machine learning is a potentially useful technique in assisting the differentiation of asthmatic cough sounds from healthy voluntary cough sounds in children.

Funder

Singapore-MIT Alliance for Research and Technology Centre

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3