Abstract
Real wars involve a considerable number of uncertainties when determining firing scheduling. This study proposes a robust optimization model that considers uncertainties in wars. In this model, parameters that are affected by enemy’s behavior and will, i.e., threats from enemy targets and threat time from enemy targets, are assumed as uncertain parameters. The robust optimization model considering these parameters is an intractable model with semi-infinite constraints. Thus, this study proposes an approach to obtain a solution by reformulating this model into a tractable problem; the approach involves developing a robust optimization model using the scenario concept and finding a solution in that model. Here, the combinations that express uncertain parameters are assumed by scenarios. This approach divides problems into master and subproblems to find a robust solution. A genetic algorithm is utilized in the master problem to overcome the complexity of global searches, thereby obtaining a solution within a reasonable time. In the subproblem, the worst scenarios for any solution are searched to find the robust solution even in cases where all scenarios have been expressed. Numerical experiments are conducted to compare robust and nominal solutions for various uncertainty levels to verify the superiority of the robust solution.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献