Robust Optimization Approach Using Scenario Concepts for Artillery Firing Scheduling Under Uncertainty

Author:

Choi ,Yun ,Kim ,Jin ,Kim

Abstract

Real wars involve a considerable number of uncertainties when determining firing scheduling. This study proposes a robust optimization model that considers uncertainties in wars. In this model, parameters that are affected by enemy’s behavior and will, i.e., threats from enemy targets and threat time from enemy targets, are assumed as uncertain parameters. The robust optimization model considering these parameters is an intractable model with semi-infinite constraints. Thus, this study proposes an approach to obtain a solution by reformulating this model into a tractable problem; the approach involves developing a robust optimization model using the scenario concept and finding a solution in that model. Here, the combinations that express uncertain parameters are assumed by scenarios. This approach divides problems into master and subproblems to find a robust solution. A genetic algorithm is utilized in the master problem to overcome the complexity of global searches, thereby obtaining a solution within a reasonable time. In the subproblem, the worst scenarios for any solution are searched to find the robust solution even in cases where all scenarios have been expressed. Numerical experiments are conducted to compare robust and nominal solutions for various uncertainty levels to verify the superiority of the robust solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3