Effects of Solubilizer and Magnetic Field during Crystallization Induction of Ammonium Bicarbonate in New Ammonia-Based Carbon Capture Process

Author:

Dong Linhan,Feng DongdongORCID,Zhang Yu,Dong Heming,Zhao Zhiqi,Gao Jianmin,Zhang Feng,Zhao Yijun,Sun Shaozeng,Huang Yudong

Abstract

As a chemical absorption method, the new ammonia carbon capture technology can capture CO2. Adding ethanol to ammonia can reduce the escape of ammonia to a certain extent and increase the absorption rate of CO2. The dissolution and crystallization of ethanol can realize the crystallization of ammonium bicarbonate and generate solid products. The induction of the crystallization process is influenced by many parameters, such as solution temperature, supersaturation, and solvating precipitant content. The basic nucleation theory is related to the critical size of nucleation. Accurate measurement of the induction period and investigating relevant factors can help to assess the nucleation kinetics. The effects of solubilizer content, temperature, and magnetic field on the induction period of the crystallization process of ammonium bicarbonate in the ethanol–H2O binary solvent mixture and determining the growth mechanism of the crystal surface by solid–liquid surface tension and surface entropy factor are investigated. The results indicate that under the same conditions of mixed solution temperature, the crystallization induction period becomes significantly longer, the solid–liquid surface tension increases, and the nucleation barrier becomes more significant and less likely to form nuclei as the content of solvating precipitants in the components increases. At the same solubilizer content, there is an inverse relationship between the solution temperature and the induction period, and the solid–liquid surface tension decreases. The magnetic field can significantly reduce the induction period of the solvate crystallization process. This gap tends to decrease with an increase in supersaturation; the shortening reduces from 96.9% to 84.0%. This decreasing trend becomes more and more evident with the rise of solvent content in the solution. The variation of surface entropy factor under the present experimental conditions ranges from 0.752 to 1.499. The growth mode of ammonium bicarbonate in the ethanol–H2O binary solvent mixture can be judged by the surface entropy factor as continuous growth.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation Funded Project

Heilongjiang Provincial Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3