Data-Driven Condition Monitoring of a Hydraulic Press Using Supervised Learning and Neural Networks

Author:

Makansi FariedORCID,Schmitz KatharinaORCID

Abstract

The automated evaluation of machine conditions is key for efficient maintenance planning. Data-driven methods have proven to enable the automated mapping of complex patterns in sensor data to the health state of a system. However, generalizable approaches for the development of such solutions in the framework of industrial applications are not established yet. In this contribution, a procedure is presented for the development of data-driven condition monitoring solutions for industrial hydraulics using supervised learning and neural networks. The proposed method involves feature extraction as well as feature selection and is applied on simulated data of a hydraulic press. Different steps of the development process are investigated regarding the design options and their efficacy in fault classification tasks. High classification accuracies could be achieved with the presented approach, whereas different faults are shown to require different configurations of the classification models.

Funder

Research Association for Fluid Power of the German Engineering Federation VDMA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. Modelling, Monitoring and Diagnostic Techniques for Fluid Power Systems;Watton,2007

2. Fault-Diagnosis Systems;Isermann,2006

3. A Survey of “Industrie 4.0” in the Field of Fluid Power—Challenges and Opportunities by the Example of Field Device Integration;Alt;Proceedings of the 11th International Fluid Power Conference,2018

4. Applied Predictive Modeling, Corrected at 5th Printing;Kuhn,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3