Distributed Generation Power Systems in Wastewater Management

Author:

Vrzala MatoušORCID,Goňo Miroslava,Goňo RadomírORCID,Kotulla MichalORCID,Wzorek MałgorzataORCID,Leonowicz ZbigniewORCID

Abstract

The article concerns the energy security of a wastewater treatment process caused by unforeseen situations related to the risk of electrical power outages. In this case, renewable energy sources based on distributed generation power systems can solve this problem in each wastewater treatment plant. The article highlights e related challenges and proposes the direction of solutions in this regard based on Czech conditions. The first part of the paper deals with the consequences of long-term outage of wastewater treatment plants on the population and the environment. There are several solutions presented for blackout conditions, and model calculations are made based on data from a Czech wastewater treatment plant. Diesel engine-generators, biogas as a cogeneration source of heat and electricity, solar panels with storage systems and combined biogas and solar systems were considered as approaches to provide energy autonomy during a blackout in a wastewater treatment plant. Special attention was paid to a combination of CHP units with solar panels and batteries. The results were evaluated for three different locations for this combination. It was concluded that biogas combustion in the CHP unit was the most profitable option, allowing the production of electricity independently of the grid for its own consumption and possibly for other operations. The last part of the paper deals with the transition to island operation, which must occur during a blackout. This transition is more difficult for both solar panels and cogeneration units if they were to supply electricity to the grid before a blackout. The transition to energy island operation could be ensured by frequency relay and processor devices to control the circuit breaker. Then, to maintain island operation, it would be necessary to have an automatic load shedding/application system.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques;Chemosphere;2024-08

2. Reliability Improvement with Automatic Transition Between Grid-Connected and Islanded Modes;2024 24th International Scientific Conference on Electric Power Engineering (EPE);2024-05-15

3. Computational Model of Hydrogen PEM Fuel Cells;2024 24th International Scientific Conference on Electric Power Engineering (EPE);2024-05-15

4. Comparing of Potential Energy from the Sun During a Year in Czechia and Vietnam;2024 24th International Scientific Conference on Electric Power Engineering (EPE);2024-05-15

5. A Review of Photovoltaic Technology;2024 24th International Scientific Conference on Electric Power Engineering (EPE);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3