Abstract
This paper presents a numerical analysis of the stability of the flow parameters along the intake duct of an aircraft jet turbine engine. This problem has been investigated by many research teams and was included in the literature analysis. The unstable operation of a turbojet intake system can be the consequence of many adverse factors, including an intake vortex. The investigated intake system, due to its low location to the plane of the airport, is highly susceptible to the formation of an intake vortex. The phenomenon of an intake vortex can, in the worst-case scenario, result in the surging of the turbojet, and even engine stalling. This paper presents a developed model of the forward section of an aircraft, complete with its intake duct, and the method of its discretization. The intake-system model and numerical analysis were performed in Ansys Fluent. The flow parameters adopted for numerical simulations, under specific boundary conditions, corresponded to the operating conditions of the engine cooperating with the investigated intake system. The numerical calculations were performed assuming an air-pressure rise in the end section of the engine-intake system, reflecting the reduction in the pitch angle of the inlet stator blades of the fan. As a result, the pressure distributions in a significant cross section in the intake system were obtained. The results were analyzed with the quantitative distribution of the pressure fields by applying a dimensionless potential-pressure ratio. The pressure ratio enabled a comparative analysis of the nonuniformity of the total-pressure distribution in selected cross sections of the intake system. The results were revealing in terms of growing unstable flows in the flow duct. A major conclusion drawn from the results, by testing the dimensionless potential-pressure ratio, was that, within certain limits, it was possible to improve the flow uniformity by increasing the throttling pressure.
Funder
Military University of Technology, Warsaw, Poland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献