Heavy Multi-Articulated Vehicles with Electric and Hybrid Power Trains for Road Freight Activity: An Australian Context

Author:

Allwright Joshua,Rahman AkhlaqurORCID,Coleman Marcus,Kulkarni AmbarishORCID

Abstract

The electrification of vehicles from the automotive and public transport industries can reduce harmful emissions if implemented correctly, but there is little evidence of whether the electrification of heavy freight transportation vehicles (HFTVs), such as multi-articulated vehicles, used in the freight industry could see the same benefits. This work studied heavy multi-articulated freight vehicles and developed a comparative analysis between electric and conventional diesel power trains to reduce their total emissions. Real-world drive cycle data were obtained from a heavy multi-articulated freight vehicle operating around Melbourne, Australia, with a gross combination mass (GCM) of up to 66,000 kg. Numerical models of the case study freight vehicle were then simulated with diesel, through-the-road parallel (TTRP) hybrid and electric power trains over the five different drive cycles with fuel and energy consumption results quantified. Battery weights were added on top of the real-world operating GCMs to assure the operational payload did not have to be reduced to accommodate the addition of electric power trains. The fuel and energy consumptions were then used to estimate the real-world emissions and compared. The results showed a positive reduction in tailpipe emissions, but total greenhouse emission was worse for operation in Melbourne if batteries were charged off the grid. However, if Melbourne can move towards more renewable energy and change its emission factor for generating electricity down to 0.49 kg CO2-e/kWh, a strong decarbonization could be possible for the Australian road freight industry and could help meet emission reduction targets set out in the 2015 Paris Agreement.

Funder

Australian Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Well-to-wheel driving cycle simulations for freight transportation: battery and hydrogen fuel cell electric vehicles

2. Scenarios for the Brazilian road freight transport industry

3. Type Vehicle Combinations—Hct Sweden 25.25 to 34 Meters. 2018. HVTT15. International Forum for Road Transport Technology http://road-transport-technology.org//Proceedings/HVTT%2015//Larsson%20%20TYPE%20VEHICLE%20COMBINATIONS%20-%20HCT%20SWEDEN%2025.25%20TO%2034%20METERS.pdf

4. Analyzing the Promoting Factors for Adopting Green Logistics Practices: A Case Study of Road Freight Industry in Nanjing, China

5. RESEARCH OF ENERGY EFFICIENCY AND REDUCTION OF ENVIRONMENTAL POLLUTION IN FREIGHT RAIL TRANSPORTATION

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3