Artificial Intelligence-Based Control and Coordination of Multiple PV Inverters for Reactive Power/Voltage Control of Power Distribution Networks

Author:

Rehman Anis ur,Ali MuhammadORCID,Iqbal SheerazORCID,Shafiq Aqib,Ullah NasimORCID,Otaibi Sattam AlORCID

Abstract

The integration of Renewable Energy Resources (RERs) into Power Distribution Networks (PDN) has great significance in addressing power deficiency, economics and environmental concerns. Photovoltaic (PV) technology is one of the most popular RERs, because it is simple to install and has a lot of potential. Moreover, the realization of net metering concepts further attracted consumers to benefit from PVs; however, due to ineffective coordination and control of multiple PV systems, power distribution networks face large voltage deviation. To highlight real-time control, decentralized and distributed control schemes are exploited. In the decentralized scheme, each zone (having multiple PVs) is considered an agent. These agents have zonal control and inter-zonal coordination among them. For the distributed scheme, each PV inverter is viewed as an agent. Each agent coordinates individually with other agents to control the reactive power of the system. Multi-agent actor-critic (MAAC) based framework is used for real-time coordination and control between agents. In the MAAC, an action is created by the actor network, and its value is evaluated by the critic network. The proposed scheme minimizes power losses while controlling the reactive power of PVs. The proposed scheme also maintains the voltage in a certain range of ±5%. MAAC framework is applied to the PV integrated IEEE-33 test bus system. Results are examined in light of seasonal variation in PV output and time-changing loads. The results clearly indicate that a controllable voltage ratio of 0.6850 and 0.6508 is achieved for the decentralized and distributed control schemes, respectively. As a result, voltage out of control ratio is reduced to 0.0275 for the decentralized scheme and 0.0523 for the distributed control scheme.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3