An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids

Author:

Nasir M. Bilal,Hussain AsifORCID,Niazi Kamran Ali KhanORCID,Nasir MashoodORCID

Abstract

This research presents an optimal scheme for the integration of renewable resources with the utility grid to minimize the operational cost of the residential and industrial microgrids. With the changing paradigm of solar photovoltaic in low-voltage distribution networks, utilities have allowed net metering and feed-in tariff (FiT). These incentives encourage residential and industrial consumers to contribute toward energy generation. However, in conventional mode, the system may underperform if resources are not scheduled optimally. To compensate for the price difference during off-peak and on-peak hours, the energy should be taken from the grid when electricity prices are lower and supplied to the grid when the electricity price is higher. The proposed models will therefore allow optimal resource utilization considering intermittent renewable generation as well as a time-varying utility tariff. A complete comparative analysis of on-grid and off-grid models was carried out. The results indicate that the daily average saving is about 32.0% by using the proposed on-grid scheme, where a feed-in tariff is available.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3