Design of a V-Twin with Crank-Slider Mechanism Wind Energy Harvester Using Faraday’s Law of Electromagnetic Induction for Powering Small Scale Electronic Devices

Author:

Farzidayeri Jamshid,Bedekar Vishwas

Abstract

The maintenance of wireless sensor networks involves challenges such as the periodic replacement of batteries or energy sources in remote locations that are often inaccessible. Therefore, onboard energy harvesting solutions can provide a viable alternative. Experimental energy harvesting from fluid flow, specifically from air flow, is typically restricted to a rotor and stator design or a model that strikes a piezoelectric. On the other hand, energy harvesting from mechanical vibrations routinely uses the linear motion of a magnet passing through a coil or vibrating piezoelectric elements. In this paper, we propose a novel V-twin harvester design that converts wind energy from a rotational input into the linear motion of a magnet inside a coil via a crank-slider mechanism. This design allows for high performance with a smoother voltage output when compared to a reference rotor/stator harvester design or piezoelectric method. At 0.5 Hz, a single crank-slider generated a voltage of 0.176 Vpp with an output power of 0.147 mW, whereas the reference harvester generated 0.14 mW at 1.0 Hz with a 0.432 Vpp. A single crank-slider operating at regulated frequencies of 0.5, 1, 2, and 3 Hz, with a stroke length of 50 mm and a generated continuous power of 0.147, 0.452, 2.00, and 4.48 mW, respectively. We found that under ambient wind speeds of 3.4 and 4.1 m/s the V-twin formation with the optimized configuration, in which the coils and loads were both connected in series, generated 27.0 and 42.2 mW, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. Independent Statistics and Analysis;U.S. EIA (U.S. Energy Information Administration),2022

2. bp Statistical Review of World Energy 2020,2020

3. Materials and techniques for energy harvesting

4. Review of Energy Harvesters Utilizing Bridge Vibrations

5. On the Effectiveness of Vibration-based Energy Harvesting

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3