Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection

Author:

Milanović SlobodanORCID,Milenković IvanORCID,Dobrosavljević JovanORCID,Popović Marija,Solla AlejandroORCID,Tomšovský MichalORCID,Jankovský Libor

Abstract

Interactions between plants, insects and pathogens are complex and not sufficiently understood in the context of climate change. In this study, the impact of a root pathogen on a leaf-eating insect hosted by a tree species at elevated CO2 concentration is reported for the first time. The combined and isolated effects of CO2 and infection by the root pathogen Phytophthora plurivora on English oak (Quercus robur) seedlings were used to assess growth rates of plants and of gypsy moth (Lymantria dispar) larvae. For this purpose, two Q. robur provenances (Belgrade and Sombor) were used. At ambient CO2 concentration, the relative growth rates of larvae consuming leaves of plants infected by P. plurivora was higher than those consuming non-infected plants. However, at elevated CO2 concentration (1000 ppm) higher relative growth rates were detected in the larvae consuming the leaves of non-infected plants. At ambient CO2 concentration, lower growth rates were recorded in L. dispar larvae hosted in Q. robur from Belgrade in comparison to larvae hosted in Q. robur from Sombor. However, at elevated CO2 concentration, similar growth rates irrespective of the provenance were observed. Defoliation by the gypsy moth did not influence the growth of plants while P. plurivora infection significantly reduced tree height in seedlings from Belgrade. The results confirm that a rise of CO2 concentration in the atmosphere modifies the existing interactions between P. plurivora, Q. robur, and L. dispar. Moreover, the influence of the tree provenances on both herbivore and plant performance at elevated CO2 concentrations suggests a potential for increasing forest resilience through breeding.

Publisher

MDPI AG

Subject

Forestry

Reference82 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3