Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a High-Resolution 48 h Survey in a Vineyard (Anadia, Portugal)

Author:

Frodella WilliamORCID,Lazzeri Giacomo,Moretti Sandro,Keizer Jacob,Verheijen Frank G. A.

Abstract

The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3