Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets

Author:

Ojaroudi Parchin NaserORCID,Jahanbakhsh Basherlou HalehORCID,Abd-Alhameed Raed A.ORCID

Abstract

In this study, a new design of a tri-band multiple-input–multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) cellular systems. Its structure is composed of eight identical planar-inverted F antenna (PIFA) elements placed at different edge corners of the handset mainboard with overall dimensions of 150 × 75 mm2. The PIFA elements and ground plane of the MIMO antenna system are arranged on the back layer of the platform, which makes the design easy to integrate with the handset circuit. For S11 ≤ −10 dB, the radiation elements of the MIMO design operate at the frequency ranges of 2.5–2.7 GHz, 3.4–3.75 GHz, and 5.6–6 GHz covering the long-term evolution (LTE) 41, 42/43, and 47 operation bands, respectively. The array achieves better than 15 dB return loss results across the three operating bands. The presented antenna array not only exhibits multi-band operation but also generates the polarization diversity characteristic, which makes it suitable for multi-mode operation. The proposed antenna array was simulated and experimentally tested. Fundamental characteristics of the proposed design are investigated. It offers three band S-parameters with acceptable isolation and dual-polarized radiation with quite good efficiency and gain results. Besides this, the total active reflection coefficient (TARC) and envelope correlation coefficient (ECC) results of the PIFAs are very low over the bands. In addition, the radiation characteristics of the MIMO antenna in the presence of the user and handset components are studied. Moreover, a new and compact phased array millimeter-wave (MM-Wave) antenna with broad bandwidth and end-fire radiation is introduced which can be easily integrated into the smartphone antenna system. Due to its good performance and simple structures, the proposed smartphone antenna array design is a good candidate for future multi-mode 5G cellular applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3