Abstract
Electrooculography (EOG) signals have been widely used in Human-Computer Interfaces (HCI). The HCI systems proposed in the literature make use of self-designed or closed environments, which restrict the number of potential users and applications. Here, we present a system for classifying four directions of eye movements employing EOG signals. The system is based on open source ecosystems, the Raspberry Pi single-board computer, the OpenBCI biosignal acquisition device, and an open-source python library. The designed system provides a cheap, compact, and easy to carry system that can be replicated or modified. We used Maximum, Minimum, and Median trial values as features to create a Support Vector Machine (SVM) classifier. A mean of 90% accuracy was obtained from 7 out of 10 subjects for online classification of Up, Down, Left, and Right movements. This classification system can be used as an input for an HCI, i.e., for assisted communication in paralyzed people.
Funder
Deutsche Forschungsgemeinschaft
Horizon 2020 Framework Programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献