Hybrid Data-Driven and Physics-Based Modeling for Gas Turbine Prescriptive Analytics

Author:

Belov Sergei,Nikolaev SergeiORCID,Uzhinsky Ighor

Abstract

This paper presents a methodology for predictive and prescriptive analytics of a gas turbine. The methodology is based on a combination of physics-based and data-driven modeling using machine learning techniques. Combining these approaches results in a set of reliable, fast, and continuously updating models for prescriptive analytics. The methodology is demonstrated with a case study of a jet-engine power plant preventive maintenance and diagnosis of its flame tube. The developed approach allows not just to analyze and predict some problems in the combustion chamber, but also to identify a particular flame tube to be repaired or replaced and plan maintenance actions in advance.

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Reference37 articles.

1. Definition of Prescriptive Analytics—Gartner Information Technology Glossaryhttps://www.gartner.com/en/information-technology/glossary/prescriptive-analytics

2. Prescriptive analytics: Literature review and research challenges

3. Predictive and Prescriptive Analytics in Big-data Era;Deshpande,2019

4. A procedural approach for realizing prescriptive maintenance planning in manufacturing industries

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of ensemble machine learning techniques to the diagnosis of the combustion in a gas turbine;Applied Thermal Engineering;2024-07

2. Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling;Journal of the Korean Society of Propulsion Engineers;2023-02-28

3. Optimization of Turbine Blade Aerodynamic Designs Using CFD and Neural Network Models;International Journal of Turbomachinery, Propulsion and Power;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3