Amalgamation of Geometry Structure, Meteorological and Thermophysical Parameters for Intelligent Prediction of Temperature Fields in 3D Scenes

Author:

Cao YuanORCID,Li Ligang,Ni Wei,Liu BoORCID,Zhou Wenbo,Xiao Qi

Abstract

Temperature field calculation is an important step in infrared image simulation. However, the existing solutions, such as heat conduction modelling and pre-generated lookup tables based on temperature calculation tools, are difficult to meet the requirements of high-performance simulation of infrared images based on three-dimensional scenes under multi-environmental conditions in terms of accuracy, timeliness, and flexibility. In recent years, machine learning-based temperature field prediction methods have been proposed, but these methods only consider the influence of meteorological parameters on the temperature value, while not considering the geometric structure and the thermophysical parameters of the object, which results in the low accuracy. In this paper, a multivariate temperature field prediction network based on heterogeneous data (MTPHNet) is proposed. The network fuses geometry structure, meteorological, and thermophysical parameters to predict temperature. First, a Point Cloud Feature Extraction Module and Environmental Data Mapping Module are used to extract geometric information, thermophysical, and meteorological features. The extracted features are fused by the Data Fusion Module for temperature field prediction. Experiment results show that MTPHNet significantly improves the prediction accuracy of the temperature field. Compared with the v-Support Vector Regression and the combined back-propagation neural network, the mean absolute error and root mean square error of MTPHNet are reduced by at least 23.4% and 27.7%, respectively, while the R-square is increased by at least 5.85%. MTPHNet also achieves good results in multi-target and complex target temperature field prediction tasks. These results validate the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3