Energy-Efficient De-Duplication Mechanism for Healthcare Data Aggregation in IoT

Author:

Khan Muhammad Nafees Ulfat1ORCID,Cao Weiping2,Tang Zhiling2ORCID,Ullah Ata3,Pan Wanghua2

Affiliation:

1. School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

3. Department of Computer Science, National University of Modern Languages (NUML), Islamabad 44000, Pakistan

Abstract

The rapid development of the Internet of Things (IoT) has opened the way for transformative advances in numerous fields, including healthcare. IoT-based healthcare systems provide unprecedented opportunities to gather patients’ real-time data and make appropriate decisions at the right time. Yet, the deployed sensors generate normal readings most of the time, which are transmitted to Cluster Heads (CHs). Handling these voluminous duplicated data is quite challenging. The existing techniques have high energy consumption, storage costs, and communication costs. To overcome these problems, in this paper, an innovative Energy-Efficient Fuzzy Data Aggregation System (EE-FDAS) has been presented. In it, at the first level, it is checked that sensors either generate normal or critical readings. In the first case, readings are converted to Boolean digit 0. This reduced data size takes only 1 digit which considerably reduces energy consumption. In the second scenario, sensors generating irregular readings are transmitted in their original 16 or 32-bit form. Then, data are aggregated and transmitted to respective CHs. Afterwards, these data are further transmitted to Fog servers, from where doctors have access. Lastly, for later usage, data are stored in the cloud server. For checking the proficiency of the proposed EE-FDAS scheme, extensive simulations are performed using NS-2.35. The results showed that EE-FDAS has performed well in terms of aggregation factor, energy consumption, packet drop rate, communication, and storage cost.

Funder

Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3