A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting

Author:

Zou Hongjie,Zhang Yitao,Zhang Jun,Chen Chuanglu,Geng Xingguang,Zhang Shaolong,Zhang Haiying

Abstract

Pulse wave signal sensed over the radial artery on the wrist is a crucial physiological indicator in disease diagnosis. The sensor array composed of multiple sensors has the ability to collect abundant pulse wave information. As a result, it has gradually attracted the attention of practitioners. However, few practical methods are used to obtain a one-dimensional pulse wave from the sensor array’s spatial multi-dimensional signals. The current algorithm using pulse wave with the highest amplitude value as the significant data suffers from low consistency because the signal acquired each time differs significantly due to the sensor’s relative position shift to the test area. This paper proposes a processing method based on time series similarity, which can take full advantage of sensor arrays’ spatial multi-dimensional characteristics and effectively avoid the above factors’ influence. A pulse wave acquisition system (PWAS) containing a micro-electro-mechanical system (MEMS) sensor array is continuously extruded using a stable dynamic pressure input source to simulate the pulse wave acquisition process. Experiments are conducted at multiple test locations with multiple data acquisitions to evaluate the performance of the algorithm. The experimental results show that the newly proposed processing method using time series similarity as the criterion has better consistency and stability.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3