Antimony Mining from PET Bottles and E-Waste Plastic Fractions

Author:

Alassali AyahORCID,Picuno Caterina,Samara HaninORCID,Diedler Sascha,Fiore SilviaORCID,Kuchta Kerstin

Abstract

In this study antimony concentration was analyzed in 30 plastic items (from polyethylene terephthalate (PET) bottles and e-waste) directly by X-ray fluorescence spectroscopy (XRF) spectroscopy. PET samples were digested in a microwave oven with aqua regia. The plastic components deriving from e-waste followed three parallel routes: 1. microwave digestion using different acids (aqua regia, 18 M H2SO4, 12 M HCl and 6 M HCl); 2. conversion into ash (at 600 °C) and then microwave digestion with aqua regia, and 3. extraction with 12 M HCl at room temperature for different durations (2 h and 24 h). Results showed that antimony extraction yields from PET were between 57% and 92%. Antimony extraction from e-waste plastics was more challenging: aqua regia was inefficient for poly (acrylonitrile butadiene styrene) (ABS) samples (extraction yield was about 20% only), while on a mixture of ABS and polycarbonate (PC), aqua regia, H2SO4 and HCl exhibited equivalent performances (~21%). Ashed samples returned yields ranging from 20% to over 50%. Room temperature extraction on e-waste plastics obtained lower extraction efficiencies, yet longer incubation durations lead to higher yields. In conclusion, the main challenge associated with antimony mining from plastic waste could be its heterogeneous composition; therefore, the development of reference analytical procedures is highly needed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3