Evaluation on Strength Properties of Lime–Slag Stabilized Loess as Pavement Base Material

Author:

Jia Liang,Zhang Li,Guo Jian,Yao KaiORCID,Lim Sin MeiORCID,Li Bin,Xu HuiORCID

Abstract

This study aimed to investigate the feasibility of using lime–slag stabilized loess as base-course material by assessing its unconfined compressive strength (UCS). Loess stabilized with various mix ratios were compacted and cured to three, five, seven, and 28 days, respectively, for further strength tests. The effects of binder content, lime-to-slag (L/S) ratio, porosity, and curing time on the UCS of stabilized loess were addressed in detail. The test results show that UCS increases with the increase in binder content or curing time, and it gains strength rapidly within the first seven days of curing. At the same binder content, UCS decreases with the decrease in L/S ratio or porosity. Finally, the correlations of UCS with binder content, porosity, and curing time were derived, which exhibited reasonable correlation coefficients R2 (from 0.86 to 0.97).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3