Abstract
The results of life-cycle assessments (LCAs) of concrete are highly dependent on the concrete design method. In this study, LCAs were conducted to evaluate the environmental impacts of the replacement of sand with furnace bottom-ash (FBA) in concrete. In the FBA-based concretes, sand was replaced with FBA at proportions of 0, 30, 50, 70, and 100 wt%. Two design methods were studied: (i) concrete with fixed slump ranges of 0–10 mm (CON-fix-SLUMP-0-10) and 30–60 mm (CON-fix-SLUMP-30-60); and (ii) concrete with fixed water/cement (W/C) ratios of 0.45 (CON-fix-W/C-0.45) and 0.55 (CON-fix-W/C-0.55). The ReCiPe2016 midpoint and single-score (six methodological options) methods were used to compare the environmental damage caused by the FBA-based concretes. A two-stage nested (hierarchical) analysis of variance (ANOVA) was used to simultaneously evaluate the results of six ReCiPe2016 methodologies. The ReCiPe2016 results indicate that replacing sand with FBA decreased the environmental impact of the concretes with fixed slump ranges and increased the environmental impact of the concretes with fixed W/C ratios. Therefore, using FBA as a partial sand replacement in concrete production is of debatable utility, as its impact highly depends on the concrete design method used.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献