Abstract
Numerical approximations of definite integrals and related error estimations can be made using Simpson’s rules (inequalities). There are two well-known rules: Simpson’s 13 rule or Simpson’s quadrature formula and Simpson’s 38 rule or Simpson’s second formula. The aim of the present paper is to extend several inequalities that hold for Simpson’s 13 rule to Simpson’s 38 rule. More precisely, we prove a weighted version of Simpson’s second type inequality and some Simpson’s second type inequalities for Lipschitzian, bounded variations, convex functions and the functions that belong to Lq. Some applications of the second type Simpson’s inequalities relate to approximations of special means and Simpson’s 38 formula, and moments of random variables are made.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献