Optimizing the Tolerance for the Products with Multi-Dimensional Chains via Simulated Annealing

Author:

Tsung Chen-KunORCID

Abstract

The assembly is the last process of controlling the product quality during manufacturing. The installation guidance should provide the appropriate assembly information, e.g., to specify the components in each product. The installation guidance with low quality results in rework or the resource waste from the failure products. This article extends the dimensional chain assembly problem proposed by Tsung et al. to consider the multiple dimensional chains in the product. Since there are multiple dimensional chains in a product, the installation guidance should consider inseparability and acceptability as computing the installation guidance. The inseparability means that the qualities of all dimensional chains in the part should be evaluated together without separation, while the acceptability stands for that the size of each product should be satisfied with the specification. The simulated annealing (SA) algorithm is applied to design the assembly guidance optimizer named as AGOMDC to compute the assembly guidance in the dimensional chain assembly problem with multiple dimensional chains. Since SA has high performance in searching neighbor solutions, the proposed approach could converge rapidly. Thus, proposed AGOMDC could be applied in real-world application for the implementation consideration. The simulations consist of two parts: the feasibility evaluation and the algorithm configuration discussion. The first part is to verify the inseparability and acceptability that are the hard constraints of the assembly problem for the proposed AGOMDC, and the second one is to analyze the algorithm configurations to calculate the assembly guidance with 80% quality. The simulation results show that the inseparability and acceptability are achieved, while the proposed AGOMDC only requires more than two seconds to derive the results. Moreover, the recommended algorithm configurations are derived for evaluate the required running time and product quality. The configurations with product quality 80% are that the temperature descent rate is 0.9, the initial temperature is larger than 1000, and the iteration recommended function is derived based on the problem scale. The proposed AGOMDC not only helps the company to save the time of rework and prevent the resource waste of the failure products, but is also valuable for the automatic assembly in scheduling the assembly processes.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimization design of assembly tolerance based on improved NSGA-II algorithm;International Conference on Intelligent and Human-Computer Interaction Technology (IHCIT 2022);2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3