Author:
Chen Ying,Zhang Qi,Zhang Wencheng,Chen Lei
Abstract
Multi-temporal remote sensing image registration is a geometric symmetry process that involves matching a source image with a target image. To improve the accuracy and enhance the robustness of the algorithm, this study proposes an end-to-end registration network—a bidirectional symmetry network based on dual-field cyclic attention for multi-temporal remote sensing image registration, which mainly improves feature extraction and feature matching. (1) We propose a feature extraction framework combining an attention module and a pre-training model, which can accurately locate important areas in images and quickly extract features. Not only is the dual receptive field module designed to enhance attention in the spatial region, a loop structure is also used to improve the network model and improve overall accuracy. (2) Matching has not only directivity but also symmetry. We design a symmetric network of two-way matching to reduce the registration deviation caused by one-way matching and use a Pearson correlation method to improve the cross-correlation matching and enhance the robustness of the matching relation. In contrast with two traditional methods and three deep learning-based algorithms, the proposed approach works well under five indicators in three public multi-temporal datasets. Notably, in the case of the Aerial Image Dataset, the accuracy of the proposed method is improved by 39.8% compared with the Two-stream Ensemble method under a PCK (Percentage of Correct Keypoints) index of 0.05. When the PCK index is 0.03, accuracy increases by 46.8%, and increases by 18.7% under a PCK index of 0.01. Additionally, when adding the innovation points in feature extraction into the basic network CNNGeo (Convolutional Neural Network Architecture for Geometric Matching), accuracy is increased by 36.7% under 0.05 PCK, 18.2% under 0.03 PCK, and 8.4% under 0.01 PCK. Meanwhile, by adding the innovation points in feature matching into CNNGeo, accuracy is improved by 16.4% under 0.05 PCK, 9.1% under 0.03 PCK, and 5.2% under 0.01 PCK. In most cases, this paper reports high registration accuracy and efficiency for multi-temporal remote sensing image registration.
Funder
National Natural Science Foundation of China
Collaborative Innovation Foundation of Shanghai Institute of Technology
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献