Theory of Spinors in Curved Space-Time

Author:

Gu Ying-Qiu

Abstract

By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of the Dirac equation, the energy-momentum tensor of spinors and so on. To split the spinor connection into the Keller connection Υμ∈Λ1 and the pseudo-vector potential Ωμ∈Λ3 not only makes the calculation simpler, but also highlights their different physical meanings. The representation of the new spinor connection is dependent only on the metric, but not on the Dirac matrix. Only in the new form of connection can we clearly define the classical concepts for the spinor field and then derive its complete classical dynamics, that is, Newton’s second law of particles. To study the interaction between space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor fields; however, the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression. In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a spinor coefficient table Sabμν, which plays an important role in the interaction between spinor and gravity. From this paper we find that Clifford algebra has irreplaceable advantages in the study of geometry and physics.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explanation of Two Important Empirical Relations for Galaxies;Journal of Applied Mathematics and Physics;2024

2. Spinor Equation and Operator Algebra;Journal of Geometry and Symmetry in Physics;2023

3. Fundamental Cause of Bio-Chirality: Space-Time Symmetry—Concept Review;Symmetry;2022-12-28

4. Symmetry in Quantum Theory of Gravity;Symmetry;2022-04-08

5. Clifford Algebra and Hypercomplex Number as well as Their Applications in Physics;Journal of Applied Mathematics and Physics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3