Modelling Heterogeneity and Super Spreaders of the COVID-19 Spread through Malaysian Networks

Author:

Razak Fatimah AbdulORCID,Zamzuri Zamira Hasanah

Abstract

Malaysia is multi-ethnic and diverse country. Heterogeneity, in terms of population interactions, is ingrained in the foundation of the country. Malaysian policies and social distancing measures are based on daily infections and R0 (average number of infections per infected person), estimated from the data. Models of the Malaysian COVID-19 spread are mostly based on the established SIR compartmental model and its variants. These models usually assume homogeneity and symmetrical full mixing in the population; thus, they are unable to capture super-spreading events which naturally occur due to heterogeneity. Moreover, studies have shown that when heterogeneity is present, R0 may be very different and even possibly misleading. The underlying spreading network is a crucial element, as it introduces heterogeneity for a more representative and realistic model of the spread through specific populations. Heterogeneity introduces more complexities in the modelling due to its asymmetrical nature of infection compared to the relatively symmetrical SIR compartmental model. This leads to a different way of calculating R0 and defining super-spreaders. Quantifying a super-spreader individual is related to the idea of importance in a network. The definition of a super-spreading individual depends on how super-spreading is defined. Even when the spreading is defined, it may not be clear that a single centrality always correlates with super-spreading, since centralities are network dependent. We proposed using a measure of super-spreading directly related to R0 and that will give a measure of ‘spreading’ regardless of the underlying network. We captured the vulnerability for varying degrees of heterogeneity and initial conditions by defining a measure to quantify the chances of epidemic spread in the simulations. We simulated the SIR spread on a real Malaysian network to illustrate the effects of this measure and heterogeneity on the number of infections. We also simulated super-spreading events (based on our definition) within the bounds of heterogeneity to demonstrate the effectiveness of the newly defined measure. We found that heterogeneity serves as a natural curve-flattening mechanism; therefore, the number of infections and R0 may be lower than expected. This may lead to a false sense of security, especially since heterogeneity makes the population vulnerable to super-spreading events.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3