Development and Investigation of Fully Ventilated Deep Subwavelength Absorbers

Author:

Wang Heng,Mao Qibo

Abstract

A new type of deep subwavelength acoustic metamaterial (AMM) absorber with 100% ventilation is presented in this study. The proposed ventilation absorber consists of coiled-up half-wave resonators (HWRs) and quarter-wave resonators (QWRs). First, the sound absorption and sound transmission performances for absorbers were analyzed considering the thermal viscosity dissipation. Then, the prototype with ten HWRs and three QWRs composed of acrylic plates was manufactured based on the theoretical model. The acoustic performance of the absorber was tested in an air-filled acoustic impedance tube to determine the sound absorption and transmission loss performances. Good agreement was found between the measured and theoretically predicted results. The experimental results show that the proposed ventilation AMM absorber is able to achieve sound absorption in a range between 330 Hz and 460 Hz with a thickness of only 32 mm (about 3% of the wavelength in the air). Furthermore, the sound transmission loss can achieve 17 dB from 330 Hz to 460 Hz. The main advantage of the proposed absorber is that it can be completely ventilated in duct noise control.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Jiangxi, China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3