Towards Potential Content-Based Features Evaluation to Tackle Meaningful Citations

Author:

Qayyum Faiza,Jamil Harun,Jamil FaisalORCID,Kim Do-Hyeun

Abstract

The scientific community has presented various citation classification models to refute the concept of pure quantitative citation analysis systems wherein all citations are treated equally. However, a small number of benchmark datasets exist, which makes the asymmetric citation data-driven modeling quite complex. These models classify citations for varying reasons, mostly harnessing metadata and content-based features derived from research papers. Presently, researchers are more inclined toward binary citation classification with the belief that exploiting the datasets of incomplete nature in the best possible way is adequate to address the issue. We argue that contemporary ML citation classification models overlook essential aspects while selecting the appropriate features that hinder elutriating the asymmetric citation data. This study presents a novel binary citation classification model exploiting a list of potential natural language processing (NLP) based features. Machine learning classifiers, including SVM, KLR, and RF, are harnessed to classify citations into important and non-important classes. The evaluation is performed using two benchmark data sets containing a corpus of around 953 paper-citation pairs annotated by the citing authors and domain experts. The study outcomes exhibit that the proposed model outperformed the contemporary approaches by attaining a precision of 0.88.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. Public Knowledge: An Essay Concerning the Social Dimension of Science;Ziman,1968

2. Important citation identification by exploiting content and section-wise in-text citation count

3. Quality of Research and the Nobel Prizes

4. The Correlation between RAE Ratings and Citation Counts in Psychology;Smith,2002

5. An index to quantify an individual's scientific research output

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3