A Novel Approach to Generate Type-1 Fuzzy Triangular and Trapezoidal Membership Functions to Improve the Classification Accuracy

Author:

Azam Muhammad HamzaORCID,Hasan Mohd HilmiORCID,Hassan SaimaORCID,Abdulkadir Said JadidORCID

Abstract

Fuzzy logic is an approach that reflects human thinking and decision making by handling uncertainty and vagueness using fuzzy membership functions. When a human is engaged in the design of a fuzzy system, symmetric properties are naturally preferred. Fuzzy c-means clustering is a clustering algorithm that can cluster datasets to produce membership matrix and cluster centers, which results in generating type-1 fuzzy membership functions. However, fuzzy c-means algorithm has a limitation of producing only a single membership function type, Gaussian MF. Generation of multiple fuzzy membership functions is of immense importance as it provides more efficient and optimal solutions to a problem. Therefore, an approach to generate multiple type-1 fuzzy membership functions through fuzzy c-means is required for the optimal and improved results of classification datasets. Hence, to overcome the limitation of the fuzzy c-means algorithm, an approach for the generation of type-1 fuzzy triangular and trapezoidal membership function through fuzzy c-means is considered in this study. The approach is used to calculate and enhance the accuracy of classification datasets called iris, banknote authentication, blood transfusion, and Haberman’s survival. The proposed approach of generating MFs using FCM produce asymmetric MFs, whose results are compared with the MFs produced from grid partitioning (GP), which are symmetric MFs. The results show that the proposed approach of generating type-1 fuzzy membership function through fuzzy c-means is effective and can be adopted.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3