Author:
Shen Yanfeng,Sun Shuli,Xu Fengsheng,Liu Yanqin,Yin Xiuling,Zhou Xiaoshuang
Abstract
X-ray computed tomography (CT) is widely used in medical applications, where many efforts have been made for decades to eliminate artifacts caused by incomplete projection. In this paper, we propose a new CT image reconstruction model based on nonlocal low-rank regularity and data-driven tight frame (NLR-DDTF). Unlike the Spatial-Radon domain data-driven tight frame regularization, the proposed NLR-DDTF model uses an asymmetric treatment for image reconstruction and Radon domain inpainting, which combines the nonlocal low-rank approximation method for spatial domain CT image reconstruction and data-driven tight frame-based regularization for Radon domain image inpainting. An alternative direction minimization algorithm is designed to solve the proposed model. Several numerical experiments and comparisons are provided to illustrate the superior performance of the NLR-DDTF method.
Funder
Science and Technology Research Program for Universities in Shandong Province
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献