Asynchronous Federated Learning System Based on Permissioned Blockchains

Author:

Wang RongORCID,Tsai Wei-Tek

Abstract

The existing federated learning framework is based on the centralized model coordinator, which still faces serious security challenges such as device differentiated computing power, single point of failure, poor privacy, and lack of Byzantine fault tolerance. In this paper, we propose an asynchronous federated learning system based on permissioned blockchains, using permissioned blockchains as the federated learning server, which is composed of a main-blockchain and multiple sub-blockchains, with each sub-blockchain responsible for partial model parameter updates and the main-blockchain responsible for global model parameter updates. Based on this architecture, a federated learning asynchronous aggregation protocol based on permissioned blockchain is proposed that can effectively alleviate the synchronous federated learning algorithm by integrating the learned model into the blockchain and performing two-order aggregation calculations. Therefore, the overhead of synchronization problems and the reliability of shared data is also guaranteed. We conducted some simulation experiments and the experimental results showed that the proposed architecture could maintain good training performances when dealing with a small number of malicious nodes and differentiated data quality, which has good fault tolerance, and can be applied to edge computing scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Federated Learning

2. Logistics management system based on permissioned blockchains and RFID technology;Wang;Adv. Comput. Sci. Res.,2019

3. Bitcoin: A peer-to-peer electronic cash system;Nakamoto;Decentralized Bus. Rev.,2008

4. Reinforcement Learning. Adaptation, Learning, and Optimization;Wiering,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3