Affiliation:
1. School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132000, China
2. School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China
Abstract
In the actual working environment, most equipment models present nonlinear characteristics. For nonlinear system filtering, filtering methods such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Cubature Kalman Filter (CKF) have been developed successively, all of which show good results. However, in the process of nonlinear system filtering, the performance of EKF decreases with an increase in the truncation error and even diverges. With improvement of the system dimension, the sampling points of UKF are relatively few and unrepresentative. In this paper, a novel high-order extended Unscented Kalman Filter (HUKF) based on an Unscented Kalman Filter is designed using the higher-order statistical properties of the approximate error. In addition, a method for calculating the approximate error of the multi-level approximation of the original function under the condition that the measurement is not rank-satisfied is proposed. The effectiveness of the filter is verified using digital simulation experiments.
Funder
National Key R&D Program Intelligent Robot Key Special Project “Robot Joint Drive Control Integrated Chip”
National Natural Science Foundation of China