Parameter Tuning Approach for Incremental Nonlinear Dynamic Inversion-Based Flight Controllers

Author:

Henkenjohann Mark1,Nolte Udo1,Sion Fabian1,Henke Christian1,Trächtler Ansgar2

Affiliation:

1. Fraunhofer-Institute for Mechatronic Systems Design IEM, Zukunftsmeile 1, 33102 Paderborn, Germany

2. Heinz Nixdorf Institute, Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany

Abstract

Incremental nonlinear dynamic inversion (INDI) is a widely used approach to controlling UAVs with highly nonlinear dynamics. One key element of INDI-based controllers is the control allocation realizing pseudo controls using available actuators. However, the tracking of commanded pseudo controls is not the only objective considered during control allocation. Since the approach only works locally due to linearization and the solution is often ambiguous, additional aspects like control efforts or penalizing the deviation of certain states must be considered. Conducting the control allocation by solving a quadratic program this results in a considerable number of weighting parameters, which must be tuned during control design. Currently, this is conducted manually and is therefore time consuming. An automated approach for tuning these parameters is therefore highly beneficial. Thus, this paper presents and evaluates a model-based approach automatically tuning the control allocation parameters of a tiltrotor VTOL using an optimization algorithm. This optimization algorithm searches for optimal parameters minimizing a cost functional that reflects the design target. This cost functional is calculated based on a test mission for the VTOL which is conducted within a simulation environment. The test mission represents the common operating range of the VTOL. The simulation environment consists of an aircraft model as well as a model of the INDI-based controller which is dependent on the control allocation parameters. On this basis, model-based optimization is conducted and the optimal parameters are identified. Finally, successful real-world tests on a 4-degrees-of-freedom testbench using the identified parameters are presented. Since the control allocation parameters can significantly influence the aircraft’s stability, the 4-DOF testbench for the aircraft is required for rapid validation of the parameters at a minimum amount of risk.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3