Improved Information Fusion for Agricultural Machinery Navigation Based on Context-Constrained Kalman Filter and Dual-Antenna RTK

Author:

Cui Bingbo12ORCID,Zhang Jianxin2,Wei Xinhua12,Cui Xinyu2,Sun Zeyu12,Zhao Yan3,Liu Yufei4ORCID

Affiliation:

1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China

2. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

3. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

4. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Abstract

Automatic navigation based on dual-antenna real-time kinematic (RTK) positioning has been widely employed for unmanned agricultural machinery, whereas GNSS inevitably suffers from signal blocking and electromagnetic interference. In order to improve the reliability of an RTK-based navigation system in a GNSS-challenged environment, an integrated navigation system is preferred for autonomous navigation, which increases the complexity and cost of the navigation system. The information fusion of integrated navigation has been dominated by Kalman filter (KF) for several decades, but the KF cannot assimilate the known knowledge of the navigation context efficiently. In this paper, the geometric characteristics of the straight path and path-tracking error were employed to formulate the constraint measurement model, which suppresses the position error in the case of RTK-degraded scenarios. The pseudo-measurements were then imported into the KF framework, and the smoothed navigation state was generated as a byproduct, which improves the reliability of the RTK positioning without external sensors. The experiment result of the mobile vehicle automatic navigation indicates that the tracking error-constrained KF (EC-KF) outperforms the trajectory-constrained KF (TC-KF) and KF when the RTK system outputs a float or single-point position (SPP) solution. In the case where the duration of the SPP solution was 20 s, the positioning errors of the EC-KF and TC-KF were reduced by 38.50% and 24.04%, respectively, compared with those of the KF.

Funder

Natural Science Foundation of China

Primary Research & Development Plan of Jiangsu Province

Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment

Primary Research & Development Plan of Danyang City

Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education

Publisher

MDPI AG

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3