Effects of PTFE Micro-Particles on the Fiber-Matrix Interface of Polyoxymethylene/Glass Fiber/Polytetrafluoroethylene Composites

Author:

Singh Jasbir,Ching Yern,Liu De,Ching Kuan,Razali Shaifulazuar,Gan Seng

Abstract

Reinforcing polyoxymethylene (POM) with glass fibers (GF) enhances its mechanical properties, but at the expense of tribological performance. Formation of a transfer film to facilitate tribo-contact is compromised due to the abrasiveness of GF. As a solid lubricant, for example, polytetrafluoroethylene (PTFE) significantly improves friction and wear resistance. The effects of chemically etched PTFE micro-particles on the fiber-matrix interface of POM/GF/PTFE composites have not been systematically characterized. The aim of this study is to investigate their tribological performance as a function of micro-PTFE blended by weight percentage. Samples were prepared by different compositions of PTFE (0, 1.7, 4.0, 9.5, 15.0 and 17.3 wt.%). The surface energy of PTFE micro-particles was increased by etching for 10 min using sodium naphthalene salt in tetrahydrofuran. Tribological performance was characterized through simultaneous acquisition of the coefficient of friction and wear loss on a reciprocating test rig in accordance to Procedure A of ASTM G133-95. Friction and wear resistance improved as the micro-PTFE weight ratio was increased. Morphology analysis of worn surfaces showed transfer film formation, encapsulating the abrasive GF. Energy dispersive X-ray spectroscopy (EDS) revealed increasing PTFE concentration from the GF surface interface region (0.5, 1.0, 1.5, 2.0, 2.5 µm).

Funder

Ministry of Higher Education, Malaysia

Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya

Publisher

MDPI AG

Subject

General Materials Science

Reference58 articles.

1. Polymer Science and Technology;Fried,2014

2. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

3. The concept of boundary interphase in composite mechanics

4. Recent advances in fiber/matrix interphase engineering for polymer composites

5. Tribology with emphasis on polymers: Friction, scratch resistance and wear;Brostow;J. Mater. Educ.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3