Abstract
Wearable triboelectric nanogenerators (TENGs) have attracted interest in recent years, which demand highly flexible, scalable, and low-cost features. Here, we report an ultra-flexible, large-scale and textile-based TENG (T-TENG) for scavenging human motion energy. The triboelectric layer was derived from the polydimethylsiloxane (PDMS) film with a cost-effective paper-induced rough surface via a facile doctor-blending technology. Ag-coated chinlon fabric (ACF) with ultra-flexible, large-scale and conductive characteristics was used as the electrode. The as-fabricated PDMS-based ACF (PACF) composites possess a 240 × 300 mm2 superficial area and remain highly flexible under mechanical squeezing, folding and even tearing deformation. The maximum output charge of ~21 μC and voltage of 80.40 V were therefore achieved to directly power 100 LEDs based on the high surface area of 762.73 mm2 which was rationally replicated from the sandpaper of the T-TENG. Moreover, the output voltage signal can be also used as a trigger signal of a movement sensor. Importantly, the explicit theoretical model corresponding to T-TENG was quantitatively investigated under different applied force, frequency and effective surface factor.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献