A Multiple Model Approach for Flood Forecasting, Simulation, and Evaluation Coupling in Zhouqu County

Author:

Li Yongfeng1,Liu Yi2ORCID,Liu Xiaoming1,Shen Chao1

Affiliation:

1. Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Flood disasters are considered to be one of the ten natural disasters that threaten the survival of mankind. They occur frequently and have a serious impact on the national economy. For quicker response to the sudden flood, in this paper, the relevant characteristics of flood forecasting and disaster assessment are comprehensively studied to establish the corresponding models, and a multi-objective culture shuffled complex differential evolution (MOCSCDE) algorithm is proposed to optimize the model parameters. It can achieve better convergence and significantly improve the model accuracy. Then, a river hydrodynamic model is established to simulate the flooding process, and the characteristics of flood evolution, such as water depth, flow speed, duration, and submerged area, are analyzed. Third, based on the above-mentioned flood forecasting and flood evolution calculations, the relative membership function (VFS) is determined via the set pair analysis method (SPA), and the variable fuzzy set model (SPAVFS) is used for flood risk assessment. Finally, through the study of flow forecasting at Zhouqu hydrological station, it is found that the accuracy of the forecast result of the built model is best compared with LSTM and XAJ model, the mean relative error is only 7.6%, and the certainty coefficient can reach 0.96, which surpass the baselines by 20% and 7.9%.

Funder

National Key R&D Program of the 14th Five-Year Plan

Natural Science Foundation of China

General project of Hubei Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3