Developing an Accurate and Fast Non-Destructive Single Leaf Area Model for Loquat (Eriobotrya japonica Lindl) Cultivars

Author:

Teobaldelli Maurizio,Rouphael YoussefORCID,Fascella Giancarlo,Cristofori Valerio,Rivera Carlos Mario,Basile Boris

Abstract

In this research, seven different models to predict leaf area (LA) of loquat (Eriobotrya japonica Lindl) were tested and evaluated. This species was chosen due to the relevant importance of its fruit as an appreciated early summer product and of its leaves and flower as a source of additional income within the nutraceutical and functional food markets. The analysis (calibration and validation) was made using a large dataset (2190) of leaf width (W), leaf length (L), and single LA collected in ten common loquat cultivars. During the analysis, the results obtained using one- and two-regressor models were also evaluated to assess the need for fast measurements against different levels of accuracy achieved during the final estimate. The analysis permitted to finally select two different models: 1) a model based on a single measurement and quadratic relationship between the single LA and W (R2 = 0.894; root mean squared error [RMSE] = 12.98) and another model 2) based, instead, on two measurements (L and W), and on the linear relationship between single LA and the product of L × W (R2 = 0.980; RMSE = 5.61). Both models were finally validated with an independent dataset (cultivar ‘Tanaka’) confirming the quality of fitting and accuracy already observed during the calibration phase. The analysis permitted to select two different models to be used according to the aims and accuracy required by the analysis. One, based on a single-regressor quadratic model and W (rather than L) as a proxy variable, is capable of obtaining a good quality of fitting of the single LA of loquat cultivars (R2 = 0.894; RMSE = 12.98), whereas, the other, a linear two-regressor (i.e., W and L) model, permitted to achieve the highest prediction (R2 = 0.980; RMSE = 5.61) of the observed variable, but double the time required for leaf measurement.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3