Functional and Genetic Diversity of Bacteria Associated with the Surfaces of Agronomic Plants

Author:

Ali Basharat

Abstract

The main objective of this study was to evaluate the genetic diversity and agricultural significance of bacterial communities associated with the surfaces of selected agronomic plants (carrot, cabbage and turnip). The bacterial diversity of fresh agricultural produce was targeted to identify beneficial plant microflora or opportunistic human pathogens that may be associated with the surfaces of plants. Bacterial strains were screened in vitro for auxin production, biofilm formation and antibiotic resistance. 16S rRNA gene sequencing confirmed the presence of several bacterial genera including Citrobacter, Pseudomonas, Pantoea, Bacillus, Kluyvera, Lysinibacillus, Acinetobacter, Enterobacter, Serratia, Staphylococcus, Burkholderia, Exiguobacterium, Stenotrophomonas, Arthrobacter and Klebsiella. To address the biosafety issue, the antibiotic susceptibility pattern of strains was determined against different antibiotics. The majority of the strains were resistant to amoxicillin (25 µg) and nalidixic acid (30 µg). Strains were also screened for plant growth-promoting attributes to evaluate their positive interaction with colonized plants. Maximum auxin production was observed with Stenotrophomonas maltophilia MCt-1 (101 µg mL−1) and Bacillus cereus PCt-1 (97 µg mL−1). Arthrobacter nicotianae Lb-41 and Exiguobacterium mexicanum MCb-4 were strong biofilm producers. In conclusion, surfaces of raw vegetables were inhabited by different bacterial genera. Potential human pathogens such as Bacillus cereus, Bacillus anthracis, Enterobacter cloacae, Enterobacter amnigenus and Klebsiella pneumoniae were also isolated, which makes the biosafety of these vegetable a great concern for the local community. Nevertheless, these microbes also harbor beneficial plant growth-promoting traits that indicated their positive interaction with their host plants. In particular, bacterial auxin production may facilitate the growth of agronomic plants under natural conditions. Moreover, biofilm formation may help bacteria to colonize plant surfaces to show positive interactions with host plants.

Funder

University of the Punjab

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3