Identification and Characterization of Mitogen-Activated Protein Kinase (MAPK) Genes in Sunflower (Helianthus annuus L.)

Author:

Neupane Surendra,Schweitzer Sarah,Neupane Achal,Andersen Ethan,Fennell Anne,Zhou Ruanbao,Nepal Madhav

Abstract

Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that regulate biotic and abiotic stresses in plants through signaling cascades comprised of three major subfamilies: MAP Kinase (MPK), MAPK Kinase (MKK), and MAPKK Kinase (MKKK). The main objectives of this research were to conduct genome-wide identification of MAPK genes in Helianthus annuus and examine functional divergence of these genes in relation to those in nine other plant species (Amborella trichopoda, Aquilegia coerulea, Arabidopsis thaliana, Daucus carota, Glycine max, Oryza sativa, Solanum lycopersicum, Sphagnum fallax, and Vitis vinifera), representing diverse taxonomic groups of the Plant Kingdom. A Hidden Markov Model (HMM) profile of the MAPK genes utilized reference sequences from A. thaliana and G. max, yielding a total of 96 MPKs and 37 MKKs in the genomes of A. trichopoda, A. coerulea, C. reinhardtii, D. carota, H. annuus, S. lycopersicum, and S. fallax. Among them, 28 MPKs and eight MKKs were confirmed in H. annuus. Phylogenetic analyses revealed four clades within each subfamily. Transcriptomic analyses showed that at least 19 HaMPK and seven HaMKK genes were induced in response to salicylic acid (SA), sodium chloride (NaCl), and polyethylene glycol (Peg) in leaves and roots. Of the seven published sunflower microRNAs, five microRNA families are involved in targeting eight MPKs. Additionally, we discussed the need for using MAP Kinase nomenclature guidelines across plant species. Our identification and characterization of MAP Kinase genes would have implications in sunflower crop improvement, and in advancing our knowledge of the diversity and evolution of MAPK genes in the Plant Kingdom.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3