Mathematical Modelling of Hydrophilic Ionic Fertiliser Diffusion in Plant Cuticles: Lipophilic Surfactant Effects

Author:

Tredenick Eloise C.ORCID,Farrell Troy W.ORCID,Forster W. Alison

Abstract

The global agricultural industry requires improved efficacy of sprays being applied to weeds and crops to increase financial returns and reduce environmental impact. Enhancing foliar penetration is one way to improve efficacy. Within the plant leaf, the cuticle is the most significant barrier to agrochemical diffusion. It has been noted that a comprehensive set of mechanisms for ionic active ingredient (AI) penetration through plant leaves with surfactants is not well defined, and oils that enhance penetration have been given little attention. The importance of a mechanistic mathematical model has been noted previously in the literature. Two mechanistic mathematical models have been previously developed by the authors, focusing on plant cuticle penetration of calcium chloride through tomato fruit cuticles. The models included ion binding and evaporation with hygroscopic water absorption, along with the ability to vary the AI concentration and type, relative humidity, and plant species. Here, we further develop these models to include lipophilic adjuvant effects, as well as the adsorption and desorption, of compounds on the cuticle surface with a novel Adaptive Competitive Langmuir model. These modifications to a penetration model provide a novel addition to the literature. We validate our theoretical model results against appropriate experimental data, discuss key sensitivities, and relate theoretical predictions to physical mechanisms. The results indicate the addition of the desorption mechanism may be one way to predict increased penetration at late times, and the sensitivity of model parameters compares well to those present in the literature.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3